Part Number Hot Search : 
FOD4108V TC2362CT 110ZA1T 2SC44 0521DS R2020 FL208 200117MA
Product Description
Full Text Search
 

To Download AOTF27S60 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  aot27s60l/aob27s60l/AOTF27S60l/AOTF27S60 600v 27a mos tm power transistor general description product summary v ds @ t j,max 700v i dm 110a r ds(on),max 0.16 q g,typ 26nc e oss @ 400v 6 j 100% uis tested 100% r g tested symbol v ds v gs i dm i ar e ar e as mosfet dv/dt ruggedness peak diode recovery dv/dt h t j , t stg t l symbol r ja r cs r jc * drain current limited by maximum junction tempera ture. -55 to 150 300 AOTF27S60l 65 -- 3.1 2.5 AOTF27S60l 600 30 27* 17* 110 AOTF27S60 single pulsed avalanche energy g w p d repetitive avalanche energy c 50 357 mj mj 110 avalanche current c 17* 17 junction and storage temperature range t c =25c dv/dt 2.9 power dissipation b 480 40 gate-source voltage va t c =100c pulsed drain current c continuous drain current t c =25c i d 27* 27 a 7.5 c the aot27s60l & aob27s60l & AOTF27S60l & AOTF27S60 have been fabricated using the advanced mos tm high voltage process that is designed to deliver h igh levels of performance and robustness in switching applications. by providing low r ds(on) , q g and e oss along with guaranteed avalanche capability these parts can be adopted qui ckly into new and existing offline power supply designs. v units parameter absolute maximum ratings t a =25c unless otherwise noted aot27s60l/aob27s60l drain-source voltage c/w w/ o c c thermal characteristics 0.5 -- c/w maximum junction-to-case 0.35 derate above 25 o c parameter aot27s60l/aob27s60l 0.4 AOTF27S60 units v/ns 0.3 100 20 maximum case-to-sink a maximum junction-to-ambient a,d 65 65 maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds j c/w to - 263 d 2 pak g d s g d s d s g top view to-220f(3kvac;1s) to-220 g d s AOTF27S60(l) aot27s60l aob27s60l d rev 7.0: sepetember 2017 www.aosmd.com page 1 of 7 downloaded from: http:///
symbol min typ max units 600 - - 650 700 - - - 1 - 10 - i gss gate-body leakage current - - 100 n v gs(th) gate threshold voltage 2.5 3.3 4 v - 0.14 0.16 - 0.38 0.44 v sd - 0.85 - v i s maximum body-diode continuous current - - 27 a i sm - - 110 a c iss - 1294 - pf c oss - 80 - pf c o(er) - 69 - pf c o(tr) - 221 - pf c rss - 2.3 - pf r g 2.4 4.7 6.7 q g - 26 - nc q gs - 6.2 - nc q gd - 8.8 - nc t d(on) - 31 - ns t r - 33 - ns t d(off) - 99 - ns t f - 34 - ns t rr - 440 - ns i rm - 28 - a q rr - 7.5 - c applications or use as critical components in life support devices or systems are not authorized. aos does not assume any liability arising out of such applicatio ns or uses of its products. aos reserves the right to improve product design,functions and reliability without no tice. peak reverse recovery current i f =13.5a,di/dt=100a/ s,v ds =400v v v gs =10v, i d =13.5a, t j =150c drain-source breakdown voltage i d =250a, v gs =0v, t j =25c a v ds =0v, v gs =30v v ds =600v, v gs =0v v ds =5v,i d =250 a v ds =480v, t j =150c zero gate voltage drain current body diode reverse recovery charge i f =13.5a,di/dt=100a/ s,v ds =400v maximum body-diode pulsed current turn-on delaytime dynamic parameters turn-on rise time turn-off delaytime body diode reverse recovery time i f =13.5a,di/dt=100a/ s,v ds =400v reverse transfer capacitance bv dss v gs =10v, v ds =400v, i d =13.5a, r g =25 turn-off fall time total gate charge v gs =10v, v ds =480v, i d =13.5a gate source charge gate drain charge v gs =10v, i d =13.5a, t j =25c switching parameters i dss effective output capacitance, time related i r ds(on) static drain-source on-resistance i s =13.5a,v gs =0v, t j =25c diode forward voltage input capacitance v gs =0v, v ds =100v, f=1mhz output capacitance v gs =0v, v ds =100v, f=1mhz gate resistance v gs =0v, v ds =0v, f=1mhz electrical characteristics (t j =25c unless otherwise noted) static parameters parameter conditions i d =250a, v gs =0v, t j =150c effective output capacitance, energy related h v gs =0v, v ds =0 to 480v, f=1mhz a. the value of r ja is measured with the device in a still air environm ent with t a =25 c. b. the power dissipation p d is based on t j(max) =150 c, using junction-to-case thermal resistance, and i s more useful in setting the upper dissipation limit for cases where additional heatsi nking is used. c. repetitive rating, pulse width limited by juncti on temperature t j(max) =150 c, ratings are based on low frequency and duty cycl es to keep initial t j =25 c. d. the r ja is the sum of the thermal impedance from junction t o case r jc and case to ambient. e. the static characteristics in figures 1 to 6 are obtained using <300 s pulses, duty cycle 0.5% max. f. these curves are based on the junction-to-case t hermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of t j(max) =150 c. the soa curve provides a single pulse rating. g. l=60mh, i as =4a, v dd =150v, starting t j =25 c h. c o(er) is a fixed capacitance that gives the same stored e nergy as c oss while v ds is rising from 0 to 80% v (br)dss. i. c o(tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v (br)dss. j. wavesoldering only allowed at leads. rev 7.0: sepetember 2017 www.aosmd.com page 2 of 7 downloaded from: http:///
typical electrical and thermal characteristics 0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 i d (a) v ds (volts) figure 1: on-region characteristics@25 c v gs =4.5v 6v 10v 7v 0.01 0.1 1 10 100 1000 2 4 6 8 10 i d (a) v gs (volts) figure 3: transfer characteristics -55 c v ds =20v 25 c 125 c 0.0 0.1 0.2 0.3 0.4 0.5 0 10 20 30 40 50 60 r ds(on) ( ) i d (a) figure 4: on-resistance vs. drain current and gate voltage v gs =10v 0 0.5 1 1.5 2 2.5 3 -100 -50 0 50 100 150 200 normalized on-resistance temperature ( c) figure 5: on-resistance vs. junction temperature v gs =10v i d =13.5a 0.8 0.9 1 1.1 1.2 -100 -50 0 50 100 150 200 bv dss (normalized) t j ( o c) figure 6: break down vs. junction temperature 0 5 10 15 20 25 30 35 40 0 5 10 15 20 i d (a) v ds (volts) figure 2: on-region characteristics@125 c v gs =4.5v 5v 10v 6v 5v 5.5v 5.5v 7v rev 7.0: sepetember 2017 www.aosmd.com page 3 of 7 downloaded from: http:///
typical electrical and thermal characteristics 0 3 6 9 12 15 0 5 10 15 20 25 30 35 40 v gs (volts) q g (nc) figure 8: gate-charge characteristics v ds =480v i d =13.5a 1 10 100 1000 10000 0 100 200 300 400 500 600 capacitance (pf) v ds (volts) figure 9: capacitance characteristics c iss c oss c rss 0.01 0.1 1 10 100 1000 1 10 100 1000 i d (amps) v ds (volts) figure 11: maximum forward biased safe operating area for aot(b)27s60l (note f) 10 s 10ms 1ms dc r ds(on) limited t j(max) =150 c t c =25 c 100 s 0.01 0.1 1 10 100 1000 0.1 1 10 100 1000 i d (amps) v ds (volts) figure 12: maximum forward biased safe operating area for AOTF27S60(note f) 10 s 10ms 1ms 0.1s dc r ds(on) limited t j(max) =150 c t c =25 c 100 s 1s 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00 1.0e+01 1.0e+02 0.0 0.2 0.4 0.6 0.8 1.0 i s (a) v sd (volts) figure 7: body-diode characteristics (note e) 25 c 125 c 0 2 4 6 8 10 12 0 100 200 300 400 500 600 eoss(uj) v ds (volts) figure 10: coss stored energy e oss rev 7.0: sepetember 2017 www.aosmd.com page 4 of 7 downloaded from: http:///
typical electrical and thermal characteristics 0 5 10 15 20 25 30 0 25 50 75 100 125 150 current rating i d (a) t case ( c) figure 15: current de-rating (note b) 0 100 200 300 400 500 25 50 75 100 125 150 175 e as (mj) t case ( c) figure 14: avalanche energy 0.01 0.1 1 10 100 1000 0.1 1 10 100 1000 i d (amps) v ds (volts) figure 13: maximum forward biased safe operating area for AOTF27S60l(note f) 10 s 10ms 1ms 0.1s dc r ds(on) limited t j(max) =150 c t c =25 c 100 s 1s rev 7.0: sepetember 2017 www.aosmd.com page 5 of 7 downloaded from: http:///
typical electrical and thermal characteristics 0.001 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10 z jc normalized transient thermal resistance pulse width (s) figure 16: normalized maximum transient thermal imp edance for aot(b)27s60l (note f) d=t on /t t j,pk =t c +p dm .z jc .r jc r jc =0.35 c/w in descending order d=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse t on t p d single pulse 0.001 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10 100 z jc normalized transient thermal resistance pulse width (s) figure 17: normalized maximum transient thermal imp edance for AOTF27S60 (note f) d=t on /t t j,pk =t c +p dm .z jc .r jc r jc =2.5 c/w in descending order d=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse single pulse t on t p d 0.001 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10 100 z jc normalized transient thermal resistance pulse width (s) figure 18: normalized maximum transient thermal imp edance for AOTF27S60l (note f) d=t on /t t j,pk =t c +p dm .z jc .r jc r jc =3.1 c/w in descending order d=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse single pulse t on t p d rev 7.0: sepetember 2017 www.aosmd.com page 6 of 7 downloaded from: http:///
- + vdc ig vds dut - + vdc vgs vgs 10v qg qgs qgd charge gate charge test circuit & waveform - + vdc dut vdd vgs vds vgs rl rg vgs vds 10% 90% res istive switching test circuit & waveforms t t r d(on) t on t d(off) t f t off vdd vgs id vgs rg dut - + vdc l vgs vds id vgs bv i unclamped inductive switching (uis) test circuit & waveforms ig vgs - + vdc dut l vds vgs vds isd isd diode recovery tes t circuit & waveforms vds - vds + i f ar dss 2 e = 1/2 li di/dt i rm rr vdd vdd q = - idt t rr ar ar rev 7.0: sepetember 2017 www.aosmd.com page 7 of 7 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of AOTF27S60

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X